

Supplementary Figure 1: Polyvinyl alcohol treatment of the microfluidic device to render it partially hydrophilic. Aqueous PVA solution (50 mg/mL) is injected through the two OA channels while a positive air pressure prevents it from entering the IA and LO channels. After an incubation time of \sim 5 minutes, the PVA solution is removed by applying vacuum at the outlet, resulting in a pre-junction hydrophobic part and a post-junction PVA-coated hydrophilic part.

Supplementary Table 1: Potential of different LO phases to form double-emulsion droplets.

LO phase	Solubility in	Double-emulsion droplet formation
	water (gL ⁻¹)	
Ethanol/	Miscible	Did not form double-emulsion droplets as the three phases
1-propanol/		simply mixed with one another.
2-propanol		
10 v% oleic acid +	Partially	Stable double-emulsion droplets with smaller oil pockets could
90 v% 2-propanol	miscible	be obtained.
1-butanol	63-68 ¹	Not possible
2-butanol	181 ²	Multilamellar thick-shelled double-emulsion droplets were
		obtained in an uncontrolled way.
Isobutanol	66.5-90.9 ³	Not possible
1-pentanol	22 ⁴	Lipids did not dissolve properly, leading to aggregation.
Isoamyl alcohol	26.7 ⁵	Lipids did not dissolve properly, leading to aggregation.
3-pentanol	55 (at 30°C) ⁶	Lipids did not dissolve properly, leading to aggregation.
1-hexanol	5.9 ⁷	Unstable double-emulsion droplets formed sporadically.
1-heptanol	1.67 ⁸	Unstable double-emulsion droplets formed sporadically.
1-octanol	0.54 ⁹	Stable double-emulsion droplets could be formed, further
		leading to the separation of the 1-octanol pocket (OLA).
1-nonanol	0.14 ¹⁰	Unstable double-emulsion droplets were formed.
1-decanol	0.037 ¹¹	Stable double-emulsion droplets could be formed but the
		pockets did not separate.
Oleic acid	Immiscible	Stable double-emulsion droplets could be formed but the
		pockets did not separate.

All the measurements are recorded at 25°C, unless specified otherwise.

Supplementary references

- 1. Hazardous Substances Data Bank. PubChem Compound Database; CID=263. at https://pubchem.ncbi.nlm.nih.gov/compound/263#section=Solubility (accessed December 11, 2015)
- 2. Hazardous Substances Data Bank. PubChem Compound Database; CID=6568. at https://pubchem.ncbi.nlm.nih.gov/compound/6568#section=Solubility (accessed December 11, 2015)
- 3. Hazardous Substances Data Bank. PubChem Compound Database; CID=6560. at https://pubchem.ncbi.nlm.nih.gov/compound/6560#section=Solubility (accessed December 11, 2015)
- 4. Hazardous Substances Data Bank. PubChem Compound Database; CID=6276. at https://pubchem.ncbi.nlm.nih.gov/compound/6276#section=Solubility (accessed December 11, 2015)
- 5. Hazardous Substances Data Bank. PubChem Compound Database; CID=31260. at https://pubchem.ncbi.nlm.nih.gov/compound/31260#section=Solubility (accessed December 11, 2015)
- 6. International Chemical Safety Cards. PubChem Compound Database; CID=11428. at https://pubchem.ncbi.nlm.nih.gov/compound/11428#section=Solubility (accessed December 11, 2015)
- 7. Hazardous Substances Data Bank. PubChem Compound Database; CID=8103. at https://pubchem.ncbi.nlm.nih.gov/compound/8103#section=Solubility (accessed December 11, 2015)
- 8. Hazardous Substances Data Bank. PubChem Compound Database; CID=8129. at https://pubchem.ncbi.nlm.nih.gov/compound/8129#section=Solubility (accessed December 11, 2015)
- 9. Hazardous Substances Data Bank. PubChem Compound Database; CID=957. at https://pubchem.ncbi.nlm.nih.gov/compound/957#section=Solubility (accessed December 11, 2015)
- 10. Hazardous Substances Data Bank. PubChem Compound Database; CID=8914. at https://pubchem.ncbi.nlm.nih.gov/compound/8914#section=Solubility (accessed December 11, 2015)
- 11. Hazardous Substances Data Bank. PubChem Compound Database; CID=8174. at https://pubchem.ncbi.nlm.nih.gov/compound/8174#section=Solubility (accessed December 11, 2015)